Dynamical behaviors of a stochastic HTLV-I infection model with general infection form and Ornstein–Uhlenbeck process
Zhenfeng Shi and
Daqing Jiang
Chaos, Solitons & Fractals, 2022, vol. 165, issue P2
Abstract:
In this study, considering the Ornstein–Uhlenbeck process to perturb the infection rate, we develop a HTLV-I infection model with general infection form. By constructing several suitable Lyapunov functions and a compact set, and then using the strong law of numbers and Fatou’s lemma, we obtain sufficient conditions for the existence and uniqueness of the ergodic stationary distribution η(⋅) for the stochastic model. This implies long-term persistence of HTLV-I infection in a biological sense. Moreover, by using Itô’s integral stochastic model is transformed into the corresponding linearized system. Then solving the Fokker–Planck equation, we obtain the exact expression of probability density function around the quasi-equilibrium of the stochastic model. In addition, sufficient conditions for the extinction of HTLV-I infection are established. Finally, considering different incidence rate functions, we employ numerical simulations to support our results.
Keywords: HTLV-I infection model; Ornstein–Uhlenbeck process; Stationary distribution; Probability density function; Extinction (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077922009687
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:165:y:2022:i:p2:s0960077922009687
DOI: 10.1016/j.chaos.2022.112789
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().