Lie Symmetries and traveling wave solutions of the 3D Benney–Roskes/Zakharov–Rubenchik system
Şeyma Gönül and
Cihangir Özemir
Chaos, Solitons & Fractals, 2022, vol. 165, issue P2
Abstract:
We analyze the Benney–Roskes/Zakharov–Rubenchik system in space dimension three from group-theoretical point of view. We find that the Lie symmetry algebra of the system is infinite-dimensional. Concentrating on traveling solutions, we find wave components of sech−tanh type, which proceed as line solitons and kinks in two-dimensional cross-sections in space.
Keywords: Benney–Roskes system; Zakharov–Rubenchik system; Symmetry algebra; Exact solutions (search for similar items in EconPapers)
Date: 2022
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077922009869
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:165:y:2022:i:p2:s0960077922009869
DOI: 10.1016/j.chaos.2022.112807
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().