Existence of Urysohn and Atangana–Baleanu fractional integral inclusion systems solutions via common fixed point of multi-valued operators
Pari Amiri and
Mohammad Esmael Samei
Chaos, Solitons & Fractals, 2022, vol. 165, issue P2
Abstract:
This paper aims to prove that the solution of the integral equation systems exists via the concepts of fixed point and multi-valued operators. For this purpose, at first, some new theoretical results are presented and proved for the existence of a common fixed point for a pair of multi-valued operators. The multi-valued operators are αℂ-admissible and hold a new generalized contractive condition in complex-valued double-controlled metric spaces. In applying the considered generalized contractive condition on multi-valued operators, an important principle of complex numbers has complied, which is inadvertently neglected in some research This unneglectable principle is that the maximum of two complex numbers is not necessarily one of them; Rather, it can be greater than both. Thus, in our applied contractive condition, satisfying the contraction condition is considered with any member of the assumed set instead of the set maximum. Consequently, the presented results in this work improve and generalize some results mentioned in the literature. In the Applications section, two existence theorems for the solution of Urysohn integral equations system and Atangana–Baleanu fractional integral inclusions system are provided and proved based on our obtained theoretical results. Finally, analytical and numerical examples are provided to confirm the applicability of the obtained theoretical results.
Keywords: Complex-valued double controlled metric space; Atangana–Baleanu fractional integral inclusion system; Urysohn integral equation system; Multi-valued operator (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077922010013
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:165:y:2022:i:p2:s0960077922010013
DOI: 10.1016/j.chaos.2022.112822
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().