EconPapers    
Economics at your fingertips  
 

Bifurcation analysis of the Microscopic Markov Chain Approach to contact-based epidemic spreading in networks

Alex Arenas, Antonio Garijo, Sergio Gómez and Jordi Villadelprat

Chaos, Solitons & Fractals, 2023, vol. 166, issue C

Abstract: The dynamics of many epidemic compartmental models for infectious diseases that spread in a single host population present a second-order phase transition. This transition occurs as a function of the infectivity parameter, from the absence of infected individuals to an endemic state. Here, we study this transition, from the perspective of dynamical systems, for a discrete-time compartmental epidemic model known as Microscopic Markov Chain Approach, whose applicability for forecasting future scenarios of epidemic spreading has been proved very useful during the COVID-19 pandemic. We show that there is an endemic state which is stable and a global attractor and that its existence is a consequence of a transcritical bifurcation. This mathematical analysis grounds the results of the model in practical applications.

Keywords: Transcritical bifurcation; Epidemic spreading; Discrete-map; Complex networks (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077922011006
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:166:y:2023:i:c:s0960077922011006

DOI: 10.1016/j.chaos.2022.112921

Access Statistics for this article

Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros

More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().

 
Page updated 2025-03-19
Handle: RePEc:eee:chsofr:v:166:y:2023:i:c:s0960077922011006