EconPapers    
Economics at your fingertips  
 

Ion gradient-driven bifurcations of a multi-scale neuronal model

Anthony G. Chesebro, Lilianne R. Mujica-Parodi and Corey Weistuch

Chaos, Solitons & Fractals, 2023, vol. 167, issue C

Abstract: Metabolic limitations within the brain frequently arise in the context of aging and disease. As the largest consumers of energy within the brain, ion pumps that maintain the neuronal membrane potential are the most affected when energy supply becomes limited. To characterize the effects of such limitations, we analyze the ion gradients present in a conductance-based (Morris–Lecar) neural mass model. We show the existence and locations of Neimark–Sacker and period-doubling bifurcations in the sodium, calcium, and potassium reversal potentials and demonstrate that these bifurcations form physiologically relevant bounds of ion gradient variability. Within these bounds, we show how depolarization of the gradients causes decreased neural activity. We also show that the depolarization of ion gradients decreases inter-regional coherence, causing a shift in the critical point at which the coupling occurs and thereby inducing loss of synchrony between regions. In this way, we show that the Larter-Breakspear model captures ion gradient variability present at the microscale level and propagates these changes to the macroscale effects such as those observed in human neuroimaging studies.

Keywords: Neural mass model; Bifurcation theory; Metabolism (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077923000218
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:167:y:2023:i:c:s0960077923000218

DOI: 10.1016/j.chaos.2023.113120

Access Statistics for this article

Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros

More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().

 
Page updated 2025-03-19
Handle: RePEc:eee:chsofr:v:167:y:2023:i:c:s0960077923000218