EconPapers    
Economics at your fingertips  
 

Complex network analysis of arboviruses in the same geographic domain: Differences and similarities

Eslaine S. Santos, José G.V. Miranda, Hugo Saba, Lacita M. Skalinski, Marcio L.V. Araújo, Rafael V. Veiga, Maria da Conceição N. Costa, Luciana L. Cardim, Enny S. Paixão, Maria Glória Teixeira, Roberto F.S. Andrade and Maurício L. Barreto

Chaos, Solitons & Fractals, 2023, vol. 168, issue C

Abstract: Arbovirus can cause diseases with a broad spectrum from mild to severe and long-lasting symptoms, affecting humans worldwide and therefore considered a public health problem with global and diverse socio-economic impacts. Understanding how they spread within and across different regions is necessary to devise strategies to control and prevent new outbreaks. Complex network approaches have widespread use to get important insights on several phenomena, as the spread of these viruses within a given region. This work uses the motif-synchronization methodology to build time varying complex networks based on data of registered infections caused by Zika, chikungunya, and dengue virus from 2014 to 2020, in 417 cities of the state of Bahia, Brazil. The resulting network sets capture new information on the spread of the diseases that are related to the time delay in the synchronization of the time series among different municipalities. Thus the work adds new and important network-based insights to previous results based on dengue dataset in the period 2001–2016. The most frequent synchronization delay time between time series in different cities, which control the insertion of edges in the networks, ranges 7 to 14 days, a period that is compatible with the time of the individual-mosquito-individual transmission cycle of these diseases. As the used data covers the initial periods of the first Zika and chikungunya outbreaks, our analyses reveal an increasing monotonic dependence between distance among cities and the time delay for synchronization between the corresponding time series. The same behavior was not observed for dengue, first reported in the region back in 1986, either in the previously 2001–2016 based results or in the current work. These results show that, as the number of outbreaks accumulates, different strategies must be adopted to combat the dissemination of arbovirus infections.

Keywords: Complex networks; Epidemiology; Dengue; Zika; Chikungunya (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077923000358
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:168:y:2023:i:c:s0960077923000358

DOI: 10.1016/j.chaos.2023.113134

Access Statistics for this article

Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros

More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().

 
Page updated 2025-03-19
Handle: RePEc:eee:chsofr:v:168:y:2023:i:c:s0960077923000358