Learning successive weak synchronization transitions and coupling directions by reservoir computing
Lu Zhao,
Zhongkui Sun,
Ming Tang,
Shuguang Guan and
Yong Zou
Chaos, Solitons & Fractals, 2023, vol. 168, issue C
Abstract:
Synchronization prediction from oscillatory time series is one of traditional topics in nonlinear dynamics. This becomes more challenging when coupled systems show a series of different synchronization transitions when the coupling strength is progressively increased. In this work, we generalize the control parameter-aware reservoir computing to predict transitions to phase synchronization which is a rather weak form of interactions between two processes requiring long-term phase dynamics prediction. We demonstrate that a reliable long prediction for the phase variables can be achieved by considering proper bias terms and one intermittent driving variable of the target system. In addition, the reservoir computing successfully predict different transitions from phase synchronization to lag synchronization. In even weaker coupling regimes with signatures of partial synchronization, the reservoir computing predicts the coupling directions which are promising for link predictions in networks.
Keywords: Reservoir computing; Phase synchronization; Lag synchronization; Coupling direction (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077923000401
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:168:y:2023:i:c:s0960077923000401
DOI: 10.1016/j.chaos.2023.113139
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().