EconPapers    
Economics at your fingertips  
 

Double stochastic resonance in neuronal dynamics due to astrocytes

Tugba Palabas, Joaquín J. Torres, Matjaž Perc and Muhammet Uzuntarla

Chaos, Solitons & Fractals, 2023, vol. 168, issue C

Abstract: A continuously growing body of evidence indicates that astrocytes, which is the most abundant sub-type of glial cells in the nervous system, not only provide structural and metabolic support to neurons, but also they are essential sentinels and dynamic modulators of neuronal and synaptic functions. However, the potential constructive role of astrocytes in information processing at the neuronal and synaptic level, and especially also in the presence of different noise sources in the neural system, is yet unclear. With this in mind, we here study the phenomenon of stochastic resonance – the enhanced detection of weak signals in the presence of noise – in neuronal dynamics by means of a mathematical model that includes interactions between the neuron and the astrocyte. We show that astrocytes may evoke a second peak in the neuronal detection of weak signals in dependence on the noise intensity, which is the hallmark of double stochastic resonance. We explore in detail the mechanisms underlying this discovery, in particular focusing on the determinants of astrocytic function and their role in the emergence of the second stochastic resonance peak. Our research thus provides fundamental insights into the possible roles of astrocytes in inherently noisy neuronal information processing.

Keywords: Stochastic resonance; Astrocyte; Dressed neuron (search for similar items in EconPapers)
Date: 2023
References: View complete reference list from CitEc
Citations: View citations in EconPapers (9)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077923000413
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:168:y:2023:i:c:s0960077923000413

DOI: 10.1016/j.chaos.2023.113140

Access Statistics for this article

Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros

More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().

 
Page updated 2025-03-19
Handle: RePEc:eee:chsofr:v:168:y:2023:i:c:s0960077923000413