Time evolution of nonadditive entropies: The logistic map
Constantino Tsallis and
Ernesto P. Borges
Chaos, Solitons & Fractals, 2023, vol. 171, issue C
Abstract:
Due to the second principle of thermodynamics, the time dependence of entropy for all kinds of systems under all kinds of physical circumstances always thrives interest. The logistic map xt+1=1−axt2∈[−1,1](a∈[0,2]) is neither large, since it has only one degree of freedom, nor closed, since it is dissipative. It exhibits, nevertheless, a peculiar time evolution of its natural entropy, which is the additive Boltzmann–Gibbs-Shannon one, SBG=−∑i=1Wpilnpi, for all values of a for which the Lyapunov exponent is positive, and the nonadditive one Sq=1−∑i=1Wpiqq−1 with q=0.2445… at the edge of chaos, where the Lyapunov exponent vanishes, W being the number of windows of the phase space partition. We numerically show that, for increasing time, the phase-space-averaged entropy overshoots above its stationary-state value in all cases. However, when W→∞, the overshooting gradually disappears for the most chaotic case (a=2), whereas, in remarkable contrast, it appears to monotonically diverge at the Feigenbaum point (a=1.4011…). Consequently, the stationary-state entropy value is achieved from above, instead of from below, as it could have been a priori expected. These results raise the question whether the usual requirements – large, closed, and for generic initial conditions – for the second principle validity might be necessary but not sufficient.
Keywords: Classical statistical mechanics; Nonlinear dynamics and chaos; Low-dimensional chaos (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077923003326
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:171:y:2023:i:c:s0960077923003326
DOI: 10.1016/j.chaos.2023.113431
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().