Emergence of cooperation in a population with bimodal response behaviors
Lin Ma,
Jiqiang Zhang,
Guozhong Zheng,
Rizhou Liang and
Li Chen
Chaos, Solitons & Fractals, 2023, vol. 171, issue C
Abstract:
We human beings show remarkable adaptability in response to complex surroundings, we adopt different behavioral modes at different occasions, such response multimodality is critical to our survival. Yet, how this behavioral multimodality affects the evolution of cooperation remains largely unknown. Here we build a toy model to address this issue by considering a population with bimodal response behaviors, or specifically, with the Fermi and Tit-for-tat updating rules. While the former rule tends to imitate the strategies of those neighbors who are doing well, the latter repeats what their neighbors did to them. In a structural mixing implementation, where the updating rule is fixed for each individual, we find that a moderate mode mixture unexpectedly boosts the overall cooperation level of the population. The boost is even more pronounced in the probabilistic mixing, where each individual randomly chooses one of the two modes at each step, and full cooperation is seen in a wide range. These findings are robust to the underlying topology of the population. The mean-field treatment reveals that the cooperation prevalence within the players with the Fermi rule linearly increases with the fraction of TFT players and explains the non-monotonic dependence in the structural mixing. Our study shows that the diversity in response behaviors may help to explain the emergence of cooperation in realistic contexts.
Keywords: Cooperation; Bimodal behaviors; Mean-field theory; Networks (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077923003533
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:171:y:2023:i:c:s0960077923003533
DOI: 10.1016/j.chaos.2023.113452
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().