A numerical recipe for the computation of stationary stochastic processes’ autocorrelation function
S. Miccichè
Chaos, Solitons & Fractals, 2023, vol. 171, issue C
Abstract:
Many natural phenomena exhibit a stochastic nature that one attempts at modelling by using stochastic processes of different types. In this context, often one is interested in investigating the memory properties of the natural phenomenon at hand. This is usually accomplished by computing the autocorrelation function of the numerical series describing the considered phenomenon. Often, especially when considering real world data, the autocorrelation function must be computed starting from a single numerical series: i.e. with a time-average approach.
Keywords: Stochastic processes long-range correlation Langevin equation (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077923003594
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:171:y:2023:i:c:s0960077923003594
DOI: 10.1016/j.chaos.2023.113458
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().