EconPapers    
Economics at your fingertips  
 

A numerical recipe for the computation of stationary stochastic processes’ autocorrelation function

S. Miccichè

Chaos, Solitons & Fractals, 2023, vol. 171, issue C

Abstract: Many natural phenomena exhibit a stochastic nature that one attempts at modelling by using stochastic processes of different types. In this context, often one is interested in investigating the memory properties of the natural phenomenon at hand. This is usually accomplished by computing the autocorrelation function of the numerical series describing the considered phenomenon. Often, especially when considering real world data, the autocorrelation function must be computed starting from a single numerical series: i.e. with a time-average approach.

Keywords: Stochastic processes long-range correlation Langevin equation (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077923003594
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:171:y:2023:i:c:s0960077923003594

DOI: 10.1016/j.chaos.2023.113458

Access Statistics for this article

Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros

More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().

 
Page updated 2025-03-19
Handle: RePEc:eee:chsofr:v:171:y:2023:i:c:s0960077923003594