EconPapers    
Economics at your fingertips  
 

The thermodynamic efficiency of the Lorenz system

Álvaro G. López, Fernando Benito, Juan Sabuco and Alfonso Delgado-Bonal

Chaos, Solitons & Fractals, 2023, vol. 172, issue C

Abstract: We study the thermodynamic efficiency of the Malkus–Lorenz waterwheel. For this purpose, we derive an exact analytical formula that describes the efficiency of this dissipative structure as a function of the phase space variables and the constant parameters of the dynamical system. We show that, generally, as the machine is progressively driven far from thermodynamic equilibrium by increasing its uptake of matter from the environment, it also tends to increase its efficiency. However, sudden drops in the efficiency are found at critical bifurcation points leading to chaotic dynamics. We relate these discontinuous crises in the efficiency to a reduction of the attractor’s average value projected along the phase space dimensions that contribute to the rate of entropy generation in the system. In this manner, we provide a thermodynamic criterion that, presumably, governs the evolution of far-from-equilibrium dissipative systems towards their self-assembly and synchronization into increasingly complex networks and structures.

Keywords: Self-oscillation; Lorenz system; Thermodynamic efficiency; Far-from equilibrium systems; Nonlinear dynamics; Complexity (search for similar items in EconPapers)
Date: 2023
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077923004228
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:172:y:2023:i:c:s0960077923004228

DOI: 10.1016/j.chaos.2023.113521

Access Statistics for this article

Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros

More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().

 
Page updated 2025-03-19
Handle: RePEc:eee:chsofr:v:172:y:2023:i:c:s0960077923004228