New fractal–fractional parametric inequalities with applications
Saad Ihsan Butt and
Ahmad Khan
Chaos, Solitons & Fractals, 2023, vol. 172, issue C
Abstract:
In the present paper, we first establish a general parameterized identity for local fractional twice differentiable functions involving extended fractal–fractional integral operators. Thus by employing generalized convexity on differentiable mappings along with Yang’s Power-mean, Hölder’s and improved fractal integral inequalities lead us to develop variety of new fractal–fractional parameterized inequalities. Several examples are provided with graphical illustrations to prove the validity of new results. We give error analysis of improved bounds numerically and also by 2D, 3D graphical representations. Finally, we show that our main results recapture fractal variants of trapezoid, midpoint, Simpson and Bullen-type inequalities. Some related applications to the fractal means, moment of random variables and wave equations are given as well.
Keywords: Fractal theory; Generalized convex functions; Quadrature inequalities; Generalized fractional integral operators (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077923004307
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:172:y:2023:i:c:s0960077923004307
DOI: 10.1016/j.chaos.2023.113529
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().