EconPapers    
Economics at your fingertips  
 

Ensemble nonequivalence and Bose–Einstein condensation in weighted networks

Qi Zhang and Diego Garlaschelli

Chaos, Solitons & Fractals, 2023, vol. 172, issue C

Abstract: The asymptotic (non)equivalence of canonical and microcanonical ensembles, describing systems with soft and hard constraints respectively, is a central concept in statistical physics. Traditionally, the breakdown of ensemble equivalence (EE) has been associated with nonvanishing relative canonical fluctuations of the constraints in the thermodynamic limit. Recently, it has been reformulated in terms of a nonvanishing relative entropy density between microcanonical and canonical probabilities. The earliest observations of EE violation required phase transitions or long-range interactions. More recent research on binary networks found that an extensive number of local constraints can also break EE, even in absence of phase transitions. Here we study for the first time ensemble nonequivalence in weighted networks with local constraints. Unlike their binary counterparts, these networks can undergo a form of Bose–Einstein condensation (BEC) producing a core–periphery structure where a finite fraction of the link weights concentrates in the core. This phenomenon creates a unique setting where local constraints coexist with a phase transition. We find surviving relative fluctuations only in the condensed phase, as in more traditional BEC settings. However, we also find a non-vanishing relative entropy density for all temperatures, signalling a breakdown of EE due to the presence of an extensive number of constraints, irrespective of BEC. Therefore, in presence of extensively many local constraints, vanishing relative fluctuations no longer guarantee EE.

Keywords: Weighted networks; Ensemble nonequivalence; Bose–Einstein condensation; Local constraints (search for similar items in EconPapers)
Date: 2023
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077923004472
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:172:y:2023:i:c:s0960077923004472

DOI: 10.1016/j.chaos.2023.113546

Access Statistics for this article

Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros

More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().

 
Page updated 2025-03-19
Handle: RePEc:eee:chsofr:v:172:y:2023:i:c:s0960077923004472