Nonlinear biases in the roughness of a Fractional Stochastic Regularity Model
Daniele Angelini and
Sergio Bianchi
Chaos, Solitons & Fractals, 2023, vol. 172, issue C
Abstract:
A Multifractional Process with Random Exponent (MPRE) is used to model the dynamics of log-prices in a financial market. Under this assumption, we show that the Hurst-Hölder exponent of the MPRE follows the fractional Ornstein–Uhlenbeck process which in the Fractional Stochastic Volatility Model of Comte and Renault (1998) describes the dynamics of the log-volatility. We provide evidence that several biases of the estimation procedures can generate artificial rough volatility in surrogated as well as real financial data.
Keywords: Rough volatility; Fractional Ornstein–Uhlenbeck process; Multifractional process with random exponent; Hurst-Hölder exponent (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077923004514
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:172:y:2023:i:c:s0960077923004514
DOI: 10.1016/j.chaos.2023.113550
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().