EconPapers    
Economics at your fingertips  
 

Unveiling pseudo-crucial events in noise-induced phase transitions

Jacob D. Baxley, David R. Lambert, Mauro Bologna, Bruce J. West and Paolo Grigolini

Chaos, Solitons & Fractals, 2023, vol. 172, issue C

Abstract: Noise-induced phase transitions are common in various complex systems, from physics to biology. In this article, we investigate the emergence of crucial events in noise-induced phase transition processes and their potential significance for understanding complexity in such systems. We utilize the first-passage time technique and coordinate transformations to study the dynamics of the system and identify crucial events. Furthermore, we employ Diffusion Entropy Analysis, a powerful statistical tool, to characterize the complexity of the system and quantify the information content of the identified events. Our results show that the emergence of crucial events is closely related to the complexity of the system and can provide insight into its behavior. This approach may have applications in diverse fields, such as climate modeling, financial markets, and biological systems, where understanding the emergence of crucial events is of great importance.

Keywords: Self-organization; Noise-induced phase transition; Waiting-time distribution; Particle swarm optimization; Diffusion entropy analysis; Pseudo-signs; Inverse power-law index; Multiplicative fluctuations; Crucial events (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077923004812
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:172:y:2023:i:c:s0960077923004812

DOI: 10.1016/j.chaos.2023.113580

Access Statistics for this article

Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros

More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().

 
Page updated 2025-03-19
Handle: RePEc:eee:chsofr:v:172:y:2023:i:c:s0960077923004812