EconPapers    
Economics at your fingertips  
 

A kinetic framework under the action of an external force field: Analysis and application in epidemiology

Marco Menale and Carmelo Filippo Munafò

Chaos, Solitons & Fractals, 2023, vol. 174, issue C

Abstract: The tools of kinetic theory allow to describe the dynamics and evolution of a system composed of stochastically interacting particles. The interaction is modeled by means of two classes of parameters, i.e. interaction rates and transition probabilities. Therefore, a system of nonlinear ordinary differential equations is derived. Nevertheless, in general, this structure does not consider the action of an external environment. This paper aims at providing a new kinetic model where an external action occurs. Specifically, this action over the system is modeled by introducing an external force field. Then, a new kinetic model is derived, and some analytical results towards the solution of the related Cauchy problem are provided, in the conservative case: existence, uniqueness, positivity and boundedness. Finally, an application in the contest of mathematical epidemiology is given; the new kinetic framework is characterized for three classical compartmental models: SIR, SEIIR and SEIIRS. Stability results and numerical simulations, in agreement with classical theory, confirm the adherence to reality of this new model.

Keywords: Kinetic theory; Ordinary differential equations; Interacting particles; External force field; Mathematical epidemiology (search for similar items in EconPapers)
Date: 2023
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077923007026
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:174:y:2023:i:c:s0960077923007026

DOI: 10.1016/j.chaos.2023.113801

Access Statistics for this article

Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros

More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().

 
Page updated 2025-03-19
Handle: RePEc:eee:chsofr:v:174:y:2023:i:c:s0960077923007026