Certification of almost global phase synchronization of all-to-all coupled phase oscillators
Mahmut Kudeyt,
Ayşegül Kıvılcım,
Elif Köksal-Ersöz,
Ferruh İlhan and
Özkan Karabacak
Chaos, Solitons & Fractals, 2023, vol. 174, issue C
Abstract:
Coupled oscillators may exhibit almost global phase synchronization, namely their phases tend to asymptotically overlap for almost all initial conditions. We consider certification of this property using Rantzer’s dual Lyapunov approach with sum of squares (SOS) programming. To this aim, we use a stereographic transformation from a hypertorus to an Euclidean space. For the case of all-to-all coupling, this transformation converts the problem of certifying stability into the problem of certifying divergence of almost all solutions to infinity. We show that the latter can be solved using a polynomial Lyapunov density, which can be constructed via SOS programming. This leads to the certification of almost global phase synchronization of all-to-all coupled phase oscillators. We apply our method to an example of coupled phase oscillators and to an example of coupled van der Pol oscillators, and show that it can support the existing tools of local stability analysis by ensuring almost global phase synchronization.
Keywords: Dual Lyapunov theory; Kuramoto oscillators; Phase synchronization; Sum of squares programming (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077923007397
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:174:y:2023:i:c:s0960077923007397
DOI: 10.1016/j.chaos.2023.113838
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().