Fractional gradient descent algorithms for systems with outliers: A matrix fractional derivative or a scalar fractional derivative
Yuan Cao and
Shuai Su
Chaos, Solitons & Fractals, 2023, vol. 174, issue C
Abstract:
Two gradient descent based fractional methods are proposed for systems with outliers in this paper. The outliers in the collected data usually causes biased estimates, resulting in a poor identification model. Tradition fractional gradient descent (FGD) algorithm has an assumption that the fractional derivative is a scalar, which leads to slow convergence rates, especially for systems with an ill-conditioned matrix. The proposed algorithms in this paper have several advantages over the traditional identification methods: (1) can get unbiased estimates; (2) have faster convergence rates; (3) enrich the FGD estimation framework. Simulation examples demonstrate the effectiveness of the proposed algorithms.
Keywords: Parameter estimation; Fractional based method; Outliers; Convergence rate; Computational efforts (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077923007828
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:174:y:2023:i:c:s0960077923007828
DOI: 10.1016/j.chaos.2023.113881
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().