Phase transitions in rotating binary Bose–Einstein condensates with Spin–orbit and Rabi couplings
Hao Zhu,
Wen-Kai Bai,
Jun-Hui Zheng,
Yan-Mei Yu,
Lin Zhuang and
Wu-Ming Liu
Chaos, Solitons & Fractals, 2023, vol. 174, issue C
Abstract:
We present the phase transition analysis of binary Bose–Einstein condensates (BECs) with spin–orbit (SO) and Rabi couplings in quasi-two-dimensional system under rotation. In particular, we investigate the superfluid properties induced by rotation and SO coupling within hydrodynamic theory which can explain the emergence of the domain wall. By calculating the evolution of angular momentum with respect to rotation frequency, we discover first-order phase transitions where the domain wall changes into the wall-vortex complex. On the other hand, the angular momentum changes continuously with SO coupling strength accompanying by the elongation of the domain wall along x-direction. When the Rabi coupling strength exceeds a critical value, we observe a transition from the domain wall to vortex lattice resulting from a significant change of angular momentum. A phase diagram demonstrating the boundary regime in the plane of SO and Rabi coupling strengths is obtained. Our result is not only motivated by the search for novel states of matter inaccessible to existing experiments, but also by the need to identify situations where the phase transitions can be benchmarked systematically.
Keywords: Bose–Einstein condensates; Phase transitions; Hydrodynamic theory; Spin–orbit coupling; Domain wall and vortices (search for similar items in EconPapers)
Date: 2023
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077923008196
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:174:y:2023:i:c:s0960077923008196
DOI: 10.1016/j.chaos.2023.113918
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().