Collocation method using auto-correlation functions of compact supported wavelets for solving Volterra’s population model
Amjad Alipanah and
Mahnaz Zafari
Chaos, Solitons & Fractals, 2023, vol. 175, issue P1
Abstract:
In this paper, we present two numerical collocation methods for approximating the solution of Volterra’s population model by utilizing auto-correlation functions of scaling functions of Daubechies wavelets. By using the properties of these functions, we compute the Volterra integral exactly at dyadic points, and then reduce the integro-differential population model to a system of algebraic equations. Our numerical results demonstrate the effectiveness and accuracy of these methods, and we compare our numerical results with other approaches described in the literature. Additionally, we investigate an error bound for our schemes.
Keywords: Volterra’s population model; Auto-correlation; Daubechies wavelets; Accuracy; Numerical results (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077923008421
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:175:y:2023:i:p1:s0960077923008421
DOI: 10.1016/j.chaos.2023.113941
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().