EconPapers    
Economics at your fingertips  
 

Effective vaccination strategies in network-based SIR model

Sourin Chatterjee and Ahad N. Zehmakan

Chaos, Solitons & Fractals, 2023, vol. 175, issue P1

Abstract: Controlling and understanding epidemic outbreaks has recently drawn great interest in a large spectrum of research communities. Vaccination is one of the most well-established and effective strategies in order to contain an epidemic. In the present study, we investigate a network-based virus-spreading model building on the popular SIR model. Furthermore, we examine the efficacy of various vaccination strategies in preventing the spread of infectious diseases and maximizing the survival ratio. The experimented strategies exploit a wide range of approaches such as relying on network structure centrality measures, focusing on disease-spreading parameters, and a combination of both. Our proposed hybrid algorithm, which combines network centrality and illness factors, is found to perform better than previous strategies in terms of lowering the final death ratio in the community on various real-world networks and synthetic graph models. Our findings particularly emphasize the significance of taking both network structure properties and disease characteristics into account when devising effective vaccination strategies.

Keywords: Epidemics; Network; NP-Hard; Vaccination strategy (search for similar items in EconPapers)
Date: 2023
References: View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077923008536
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:175:y:2023:i:p1:s0960077923008536

DOI: 10.1016/j.chaos.2023.113952

Access Statistics for this article

Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros

More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().

 
Page updated 2025-03-19
Handle: RePEc:eee:chsofr:v:175:y:2023:i:p1:s0960077923008536