Visibility phenomena in hypercubes
Jayadev S. Athreya,
Cristian Cobeli and
Alexandru Zaharescu
Chaos, Solitons & Fractals, 2023, vol. 175, issue P1
Abstract:
We study the set of visible lattice points in multidimensional hypercubes. The problems we investigate mix together geometric, probabilistic and number theoretic themes. For example, we prove that almost all self-visible triangles with vertices in the lattice of points with integer coordinates in W=([0,N]∩Z)d are almost equilateral having all sides almost equal to dN/6, and the sine of the typical angle between rays from the visual spectra from the origin of W is, in the limit, equal to 7/4, as d and N/d tend to infinity. We also show that there exists an interesting number theoretic constant Λd,K, which is the limit probability of the chance that a K-polytope with vertices in the lattice W has all vertices visible from each other.
Keywords: Hypercube; Visible points; Polytope; Euclidean distance (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077923009256
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:175:y:2023:i:p1:s0960077923009256
DOI: 10.1016/j.chaos.2023.114024
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().