CCDH: Complexity based Causal Discovery of Hidden common cause in time series
Marcell Stippinger,
Bálint Varga,
Zsigmond Benkő,
Dániel Fabó,
Loránd Erőss,
Zoltán Somogyvári and
András Telcs
Chaos, Solitons & Fractals, 2023, vol. 176, issue C
Abstract:
Causal discovery based on temporal observations poses a significant challenge, especially when dealing with causal relationships among dynamical systems exhibiting chaotic attractors. Existing solutions are data-intensive and unable to detect hidden common drivers (also known as common causes or confounders). To address these limitations, we propose a novel method that overcomes both issues. Our method relies on Takens’ embedding theorem and assesses the complexity of rank order patterns in the embedded series by measuring compressibility through non-sequential recursive pair substitution. Remarkably, this approach is effective even with short data samples and has the capability to detect both unidirectional and bidirectional causation, as well as hidden common causes. To validate its performance, we apply the method to synthetic datasets and human electrophysiological data obtained from an epileptic patient. The method successfully provides insights into the involvement of the left and right hippocampus before, during, and after an epileptic seizure. Consequently, our method may offer valuable additional information for decision-making medical panels in determining the optimal intervention locations. Due to its advantages and simplicity, this method holds promise for application in various scientific and practical domains with successful outcomes.
Keywords: Causality; Dynamical systems; Complexity; Compressibility; Time series (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077923009554
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:176:y:2023:i:c:s0960077923009554
DOI: 10.1016/j.chaos.2023.114054
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().