EconPapers    
Economics at your fingertips  
 

Global stability and Turing instability deduced by cross-diffusion in a delayed diffusive cooperative species model

Xiaosong Tang, Xiaoyu Zhang, Yiting Liu, Wankun Li and Qi Zhong

Chaos, Solitons & Fractals, 2023, vol. 176, issue C

Abstract: In this paper, we investigate the dynamical behavior of a delayed diffusive cooperative species model with cross-diffusion. Firstly, in the case of self-diffusion, we study the persistence properties and global stability of positive equilibrium for this model by constructing Lyapunov function. The obtained results reveal that the delay has no effect on the stability of positive equilibrium for this model. However, cross-diffusion can affect the stability of positive equilibrium of this model. Then, we continue to discuss Turing bifurcation on one-dimensional space and Turing pattern on two-dimensional space, which are deduced by cross-diffusion. For Turing bifurcation, choosing some cross-diffusion rate as bifurcation parameter, this model undergoes Turing bifurcation nearby the positive equilibrium as cross-diffusion rate is across the Turing bifurcation curve, and bifurcates the stable spatially inhomogeneous steady state solutions. For Turing pattern, we find out the Turing region under some conditions successfully. Selecting the different values of two cross-diffusion rates in the Turing region respectively, we carry out some numerical simulations and obtain spots pattern, spots-strip pattern and strip pattern.

Keywords: Cooperative species model; Delay; Cross-diffusion; Global stability; Turing instability (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077923010627
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:176:y:2023:i:c:s0960077923010627

DOI: 10.1016/j.chaos.2023.114160

Access Statistics for this article

Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros

More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().

 
Page updated 2025-03-19
Handle: RePEc:eee:chsofr:v:176:y:2023:i:c:s0960077923010627