Homotopy analysis method and its convergence analysis for a nonlinear simultaneous aggregation-fragmentation model
Sonia Yadav,
Somveer Keshav,
Sukhjit Singh,
Mehakpreet Singh and
Jitendra Kumar
Chaos, Solitons & Fractals, 2023, vol. 177, issue C
Abstract:
In this article, we focus on addressing the missing convergence analysis of the homotopy analysis method (HAM) for solving pure aggregation and pure fragmentation population balance equations [Kaur et al. (2023), J. Math. Anal. Appl., 512(2), 126166]. This technique is further extended to determine analytical series solutions for a simultaneous aggregation–fragmentation (SAF) population balance equation. The convergence analysis of the extended approach for a SAF equation is performed using the concept of contraction mapping in the Banach space. The HAM method enables us to derive recursive formulas to obtain series solutions, distinguishing it from traditional numerical approaches. One noteworthy advantage of HAM is its capability to solve both linear and nonlinear differential equations without resorting to discretization, while incorporating a convergence control parameter. Given the complex nature of the SAF equation, only a single analytical solution has been available, specifically for a constant aggregation kernel and a binary breakage kernel with a linear selection function. However, our study presents new series solutions for the number density functions, considering the combination of sum and product aggregation kernels with binary breakage kernels and linear/quadratic selection functions. These particular solutions have not been previously documented in the existing literature. To verify the accuracy and efficiency of the proposed approach, the results with the finite volume scheme [Singh et al. (2021), J. Comput. Phys., 435, 110215] for establishing the accuracy and effectiveness of the proposed approach.
Keywords: Nonlinear integro-partial differential equation; Homotopy analysis method; Series solutions; Convergence analysis; Finite volume scheme (search for similar items in EconPapers)
Date: 2023
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077923011062
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:177:y:2023:i:c:s0960077923011062
DOI: 10.1016/j.chaos.2023.114204
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().