Research on demand forecasting and distribution of emergency medical supplies using an agent-based model
Xin Zhou and
Wenzhu Liao
Chaos, Solitons & Fractals, 2023, vol. 177, issue C
Abstract:
The global health crisis caused by SARS-CoV-2 since 2019 has emphasized the critical significance of effective disease detection and treatment in minimizing infection rates and fatalities, as well as halting the spread of pandemics. During an outbreak, individuals suspected of being infected require a significant amount of testing resources, while those confirmed to be infected demand substantial treatment resources. Hence, this paper is dedicated to presenting a new pandemic model that enables joint forecasting and allocation of resources for testing and treatment. The proposed model in this paper is an innovative agent-based epidemic compartmental model, which also incorporates a mixed integer model. It integrates novel features based on crucial disease characteristics, such as self-healing for asymptomatic or mild-symptomatic cases, varying infection risk levels among different groups, and the inclusion of secondary infections. Moreover, the solutions of the joint allocation model are compared with those of the independent allocation model, which entails considering resource interactions rather than allocating each resource independently. Furthermore, the validity of this model was confirmed through real-world data obtained during the SARS-CoV-2 outbreak in China. The findings offer valuable insights into the impact of intervention levels and duration, joint allocation schemes, as well as optimal allocation of test and treatment resources on cross-regional transmission of the pandemic.
Keywords: Pandemic; ABM; Medical supply; Forecast; Allocation (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S096007792301161X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:177:y:2023:i:c:s096007792301161x
DOI: 10.1016/j.chaos.2023.114259
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().