EconPapers    
Economics at your fingertips  
 

Disturbance suppression based quantized tracking control for periodic piecewise polynomial systems

N. Aravinth, R. Sakthivel, T. Satheesh and M. Chadli

Chaos, Solitons & Fractals, 2023, vol. 177, issue C

Abstract: The investigation presented here deals with the issue of disturbance suppression and the design of robust tracking control with quantization mechanism for periodic piecewise polynomial systems prone to parameter uncertainties, time delays and external disturbances by means of a proportional integral observer (PIO)-based parallel equivalent input disturbance (PEID) approach. Primarily, in the PEID technique, in order to reduce estimate errors, the PEID notion has been put forward, wherein these errors are perceived as artificial disturbances and a chain of EID compensators has been employed to make amends for them. Meanwhile, PIO’s integrating part aids in blending a relaxing variable into the system’s layout, which allows for greater flexibility in the system’s framework while rendering the system more robust. Subsequently, with the information of estimates from PEID and PIO, disturbance suppression-based quantized tracking control is designed, which simultaneously makes the system states follow the reference states and mitigates the disturbances from the system. Further, the input signals are quantized before being sent as a result of the limited capacity of the channel via which the data is transmitted. Subsequently, through configuring a periodic piecewise polynomial matrix and blending Lyapunov stability theory with the matrix polynomial lemma, adequate requirements are derived in the framework of linear matrix inequalities which ensure the desired outcomes. After which, the requisite controller and observer gain matrices are generated by solving the stated linear matrix inequality-based relations. Ultimately, the simulation portion offers a numerical example that verifies the potential of the acquired findings.

Keywords: Periodic piecewise polynomial systems; Disturbance rejection; Proportional integral observer; Tracking control; Input quantization (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077923011888
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:177:y:2023:i:c:s0960077923011888

DOI: 10.1016/j.chaos.2023.114286

Access Statistics for this article

Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros

More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().

 
Page updated 2025-03-19
Handle: RePEc:eee:chsofr:v:177:y:2023:i:c:s0960077923011888