Mean-square exponential input-to-state stability for stochastic neutral-type quaternion-valued neural networks via Itô’s formula of quaternion version
Runtian Zeng and
Qiankun Song
Chaos, Solitons & Fractals, 2024, vol. 178, issue C
Abstract:
The input-to-state stability of stochastic quaternion-valued neural networks with neutral delays is explored in this study. Unlike previous researches, this study treats the neural network as a unified entity, rather than isolating and examining the real and imaginary components separately. Through the construction of a Lyapunov functional and the use of the Itô’s formula of quaternion version, a sufficient criterion for achieving mean-square exponential input-to-state stability is obtained for stochastic quaternion-valued neural networks with neutral delays. Three numerical instances are presented to validate the reliability of the obtained conditions.
Keywords: Stochastic quaternion-valued neural networks; Neutral delay; Input-to-state stability; Lyapunov method; Itô’s formula of quaternion version (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077923012432
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:178:y:2024:i:c:s0960077923012432
DOI: 10.1016/j.chaos.2023.114341
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().