Collapse of pure-quartic solitons in a mode-locked fiber laser
Song Yang,
Zhiwei Zhu,
Chaojian He,
Yiwen Shi,
Yingying Yang and
Xuechun Lin
Chaos, Solitons & Fractals, 2024, vol. 180, issue C
Abstract:
The developed pulse shaping technology based on fourth-order dispersion (FOD) has emerged as an effective platform for exploring nonlinear dynamics and non-equilibrium processes in physics. Additionally, the pure-quartic soliton (PQS), enabled by a delicate balance between FOD and nonlinearity in the medium, offers a promising new avenue for generating high-energy pulses. Thus, there is a strong desire to conceive a quartic-dispersion-dominant mode-locked fiber laser to study the generation and evolution dynamics of PQSs under high pump power. In this paper, we report on the PQS collapse effect in a net anomalous dispersion mode-locked fiber laser for the first time. Through solving the generalized nonlinear Schrödinger equation (GNLSE) with high-order dispersion, a quartic-dispersion-dominant mode-locked fiber laser is theoretically established and the PQS generation is investigated. Our findings reveal that the PQS collapse effect is induced by excessive pump strength and the uncompensated nonlinearities, and eventually leads to the emergence of PQS packets. The higher the pump power, the more obvious the soliton collapse effect. Furthermore, our research sheds light on the significant contribution of high-order dispersion in expanding our understanding of solitons inside a fiber laser.
Keywords: Soliton; Pure-quartic soliton; Nonlinear dynamic; Fourth-order dispersion; Fiber laser (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077924000894
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:180:y:2024:i:c:s0960077924000894
DOI: 10.1016/j.chaos.2024.114538
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().