Reformulation of Deng information dimension of complex networks based on a sigmoid asymptote
Pilar Ortiz-Vilchis,
Mingli Lei and
Aldo Ramirez-Arellano
Chaos, Solitons & Fractals, 2024, vol. 180, issue C
Abstract:
Deng’s entropy is a measure used to determine the volume fractal dimension of a mass function. It has been employed in pattern recognition and conflict management applications. Recently, Deng’s entropy has been employed in complex networks to measure the information volume when handling complex and uncertain information. The general asymptote for computing the Deng information dimension of complex networks was assumed to be a power law in a previous study; meanwhile, the asymptote to obtain the information dimension is a logarithmic function. This study proposes a sigmoid asymptote for Deng’s information dimensions in complex networks. This new formulation shows that the non-specificity is maximal at ɛ = 1 and minimal when ɛ=Δ. The oppositive occurs with the maximum discord at ɛ = 1 and minimal discord at ɛ=Δ. In addition, the asymptotic values η and δ and the inflexion point ψ of the Deng entropy of the complex networks were revealed. Twenty-eight real-world and 789 synthetic networks were used to validate the proposed method. Our results show that the sigmoid asymptote best fits the empirical Deng entropy and dsD differs substantially from dD and ddD. In addition, dsD more accurately characterises the synthetic networks.
Keywords: Deng’s entropy; Information dimension; Asymptote; Mass function; Complex networks (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077924001206
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:180:y:2024:i:c:s0960077924001206
DOI: 10.1016/j.chaos.2024.114569
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().