EconPapers    
Economics at your fingertips  
 

Identification and analysis of a nonlinear mathematical model of the temporomandibular joint disc

Barbara Imiołczyk, Jerzy Margielewicz, Damian Gąska, Grzegorz Litak, Daniil Yurchenko, Magdalena Rogal, Tomasz Lipski and Edward Kijak

Chaos, Solitons & Fractals, 2024, vol. 181, issue C

Abstract: The paper presents a study of issues related to the identification of a non-linear mathematical model describing dynamics of the temporomandibular joint (TMJ) disc. Based on the tests of real disks, a non-linear model was built and verified, and then numerical simulations were carried out, the purpose of which was to analyze the behavior of the model for various excitation conditions. They include, among others, plotting a multi-colored map of distribution of the largest Lyapunov exponent based on which the areas of occurrence of periodic and chaotic motion zones are identified. Bifurcation diagrams of steady states for sample sections of the Lyapunov map and phase flows of periodic and chaotic solutions are generated. For the same sections, numerical simulations are performed to identify coexisting solutions. These studies are carried out using diagrams showing the number of coexisting solutions and their periodicity. The research presented in the paper shows a very good match between the results of computer simulations and the data recorded in the laboratory experiment. Due to the very strong damping occurring in the system, the chaotic attractors resemble quasi-periodic solutions with their geometric shape. Strong damping also significantly affects multiple solutions, which are relatively rare in the analyzed model. Most of the chaotic responses and multiple solutions occur in the range of low amplitude values of the dynamic load affecting the tissues of the articular disc. The obtained results of numerical experiments clearly indicate that in the range of low frequency values of the external load acting on the system, single periodic solutions with a periodicity of 1 T dominate. With the increase of the load amplitude, the area of occurrence of such solutions increases.

Keywords: Chaos; Lyapunov exponent; Bifurcations; TMJ; Coexisting solutions; Biomechanics (search for similar items in EconPapers)
Date: 2024
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077924001930
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:181:y:2024:i:c:s0960077924001930

DOI: 10.1016/j.chaos.2024.114642

Access Statistics for this article

Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros

More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().

 
Page updated 2025-03-19
Handle: RePEc:eee:chsofr:v:181:y:2024:i:c:s0960077924001930