EconPapers    
Economics at your fingertips  
 

Astrocyte control bursting mode of spiking neuron network with memristor-implemented plasticity

Sergey V. Stasenko, Alexey N. Mikhaylov, Alexander A. Fedotov, Vladimir A. Smirnov and Victor B. Kazantsev

Chaos, Solitons & Fractals, 2024, vol. 181, issue C

Abstract: A mathematical model of a spiking neuron network accompanied by astrocytes is considered. The network is composed of excitatory and inhibitory neurons with synaptic connections supplied by a memristor-based model of plasticity. Another mechanism for changing the synaptic connections involves astrocytic regulations using the concept of tripartite synapses. In the absence of memristor-based plasticity, the connections between these neurons drive the network dynamics into a burst mode, as observed in many experimental neurobiological studies when investigating living networks in neuronal cultures. The memristive plasticity implementing synaptic plasticity in inhibitory synapses results in a shift in network dynamics toward an asynchronous mode. Next,it is found that accounting for astrocytic regulation in glutamatergic excitatory synapses enable the restoration of ‘normal’ burst dynamics. The conditions and parameters of such astrocytic regulation’s impact on burst dynamics established.

Keywords: Spiking neuron network; Memristor-based plasticity; Neuron; Astrocyte; Synchronization; Tripartite synapse (search for similar items in EconPapers)
Date: 2024
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077924001991
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:181:y:2024:i:c:s0960077924001991

DOI: 10.1016/j.chaos.2024.114648

Access Statistics for this article

Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros

More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().

 
Page updated 2025-03-19
Handle: RePEc:eee:chsofr:v:181:y:2024:i:c:s0960077924001991