A network-based model to assess vaccination strategies for the COVID-19 pandemic by using Bayesian optimization
Gilberto González-Parra,
Javier Villanueva-Oller,
F.J. Navarro-González,
Josu Ceberio and
Giulia Luebben
Chaos, Solitons & Fractals, 2024, vol. 181, issue C
Abstract:
In this paper we build a network-based model to evaluate and compare vaccination plans in order to find the optimal strategies. The age-structured model is designed to take into account the comorbidity status and vaccination hesitancy of the population. The network-based model is calibrated to reported infected cases and deaths in the USA in order to obtain an approximated realistic scenario to test the vaccination strategies. We adapt an algorithm that is based on Bayesian optimization over permutation spaces with heuristics in order to deal with the discrete space of the vaccination strategies. We also developed an ad-hoc randomized algorithm which has a higher computational cost. Both algorithms provide similar patterns of the best found vaccination strategies. We find that these best vaccination plans prioritize the age-groups 40–59 and 60–69 years old, both with comorbidities. This result shows the highly nonlinear complexity related to the problem and its dependence on social contacts and case fatality rates. The developed network-based model adapts well to the uncertainty and heterogeneity of the real world situation and allows us to assess the efficacy of many vaccination strategies. The stochastic nature of the simulations enables us to explore additional potential scenarios and the findings offer useful information for developing vaccination plans for other future potential pandemics.
Keywords: Networks; Mathematical model; COVID-19; Vaccination; Bayesian optimization (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077924002479
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:181:y:2024:i:c:s0960077924002479
DOI: 10.1016/j.chaos.2024.114695
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().