EconPapers    
Economics at your fingertips  
 

Complexity from ordinal pattern positioned slopes (COPPS)

Jean Sire Armand Eyebe Fouda, Wolfram Koepf, Norbert Marwan, Jürgen Kurths and Thomas Penzel

Chaos, Solitons & Fractals, 2024, vol. 181, issue C

Abstract: Measuring complexity allows to characterize complex systems. Existing techniques are limited to simultaneously measure complexity from short length data sets, detect transitions and periodic dynamics. This paper presents an approach based on ordinal pattern positioned slopes (OPPS). It considers exclusively OPPS group occurrences to compute the complexity from OPPS (COPPS) as the average number of patterns and applies to short data series. The COPPS measure was successfully applied to simulation data for measuring complexity, detecting transition phases and regular dynamics, distinguishing between chaotic and stochastic dynamics; and to real-world data for detecting arrhythmia ECG beats.

Keywords: Ordinal patterns; Complexity; Time series (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077924002601
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:181:y:2024:i:c:s0960077924002601

DOI: 10.1016/j.chaos.2024.114708

Access Statistics for this article

Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros

More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().

 
Page updated 2025-03-19
Handle: RePEc:eee:chsofr:v:181:y:2024:i:c:s0960077924002601