Sliding mode control for the stabilization of fractional heat equations subject to boundary uncertainty
Rui-Yang Cai,
Lan Cheng and
Hua-Cheng Zhou
Chaos, Solitons & Fractals, 2024, vol. 181, issue C
Abstract:
By adopting the sliding mode control (SMC) and the generalized Lyapunov method, the boundary feedback stabilization issue is studied for the fractional diffusion system subject to boundary control matched disturbance. The classical sliding surface and the fractional integral sliding function are constructed and sliding mode controllers are designed respectively to realize the Mittag-Leffler (M-L) stabilization of the considered system. The controller based on the newly-introduced fractional integral sliding function not only helps to relax the constraints on the disturbance but also realizes the same stabilization effect as that of the classical one. The well-posedness result of the solution is also obtained for discontinuous fractional heat equations. Besides, a numerical experiment validates the theoretical outcomes.
Keywords: Disturbance rejection; Sliding mode control; Well-posedness of discontinuous systems; Mittag-Leffler stabilization (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077924002704
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:181:y:2024:i:c:s0960077924002704
DOI: 10.1016/j.chaos.2024.114718
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().