Correlation-enhanced viable core in metabolic networks
Mi Jin Lee,
Sudo Yi and
Deok-Sun Lee
Chaos, Solitons & Fractals, 2024, vol. 182, issue C
Abstract:
Cellular ingredient concentrations can be stabilized by adjusting generation and consumption rates through multiple pathways. To explore the portion of cellular metabolism equipped with multiple pathways, we categorize individual metabolic reactions and compounds as viable or inviable: A compound is viable if processed by two or more reactions, and a reaction is viable if all of its substrates and products are viable. Using this classification, we identify the maximal subnetwork of viable nodes, referred to as the viable core, in bipartite metabolic networks across thousands of species. The obtained viable cores are remarkably larger than those in degree-preserving randomized networks, while their broad degree distributions commonly enable the viable cores to shrink gradually as reaction nodes are deleted. We demonstrate by investigating the viable cores and the branching ratios of inviable nodes in the pruning process for artificial correlated networks that the positive degree–degree correlations of the empirical networks may underlie the enlarged viable cores compared to the randomized networks. By investigating the relation between degree and cross-species frequency of metabolic compounds and reactions, we elucidate the evolutionary origin of the correlations. Our study unveils the principle of metabolic resource allocation and its evolutionary mechanism, potentially useful for pharmaceutical applications.
Keywords: Viable core; Metabolic bipartite network; Assortativity (search for similar items in EconPapers)
Date: 2024
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S096007792400328X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:182:y:2024:i:c:s096007792400328x
DOI: 10.1016/j.chaos.2024.114776
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().