EconPapers    
Economics at your fingertips  
 

Biphasic action potentials in an individual cellular neural network cell

Huagan Wu, Jinxiang Gu, Yixuan Guo, Mo Chen and Quan Xu

Chaos, Solitons & Fractals, 2024, vol. 182, issue C

Abstract: Hardware circuit that can effectively simulate biological neurons is an important basis for neuromorphic computation. Cellular neural network (CNN) cell is the basic information processor of a CNN, which acts like a neuron in the brain and has good circuit realizability. An individual memristive CNN cell is constructed by using a memristor instead of a linear resistor for imitating the ion channel time-varying conductance, in which abundant biphasic chaotic and periodic spiking activities are uncovered. This provides a new way to simulate biological neurons at the level of analog circuits. This paper first deduces the mathematical model of the memristive CNN cell, analyzes the equilibrium stability and then explores its dynamical behaviors based on numerical simulation. The results display that the different spiking activities can be effectively regulated by the system parameters and excitation parameters. Furthermore, the analog circuit of the memristive CNN cell is designed and the PSpice-based circuit simulations are performed to verify the correctness of the numerical simulations.

Keywords: Memristor; Spiking activity; Cellular neural network; Circuit implementation (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077924003448
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:182:y:2024:i:c:s0960077924003448

DOI: 10.1016/j.chaos.2024.114792

Access Statistics for this article

Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros

More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().

 
Page updated 2025-03-19
Handle: RePEc:eee:chsofr:v:182:y:2024:i:c:s0960077924003448