Option pricing in the illiquid markets under the mixed fractional Brownian motion model
Pengcheng Ma,
Mehran Taghipour and
Carlo Cattani
Chaos, Solitons & Fractals, 2024, vol. 182, issue C
Abstract:
This paper deals with the option pricing in the illiquid markets under the mixed fractional geometric Brownian motion model with jump process. We propose a general long memory financial model, where its featuring parameters are related to demand and supply by showing also the existence of some restrictions on them. Moreover, by using the delta Hedging strategy and replicating portfolio, we obtain an integro partial differential equation (PIDE) for the option price which is solved by the spectral numerical method with suitable diagonal functions and an infinite series. In particular, by using some operational matrices and Gauss–Hermite quadrature rule, we derive a linear system of algebraic equations solved by a standard collocation method. Moreover, we study the existence and uniqueness of the solution of PIDE and prove the convergence of the numerical scheme. The applicability and efficiency of the collocation method are shown on some nontrivial numerical examples.
Keywords: Spectral method; Illiquid markets; Convergence; Option pricing; Long memory financial model; Fractional Brownian motion (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077924003588
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:182:y:2024:i:c:s0960077924003588
DOI: 10.1016/j.chaos.2024.114806
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().