Electronic implementation of simplicial complexes
V.P. Vera-Ávila,
R.R. Rivera-Durón,
Miguel S. Soriano-Garcia,
R. Sevilla-Escoboza and
Javier M. Buldú
Chaos, Solitons & Fractals, 2024, vol. 183, issue C
Abstract:
We design an experimental implementation of a simplicial complex, a complex network structure with higher-order interactions between nodes. Using a set of three Rössler-like (analog) electronic circuits under a chaotic dynamical regime, we demonstrate how the synchronization basin is enhanced by introducing higher-order interactions between the triplet of nodes, as suggested in recent theoretical works. The experiments prove that, when the coupling is introduced through the adequate variable, the synchronization area is increased. The combination of pairwise (i.e., node-to-node) with high-order (i.e., triplet) coupling is analyzed by modifying the corresponding coupling strengths, σ1 and σ2. Importantly, we detail the procedure for reproducing the experimental setup and provide all datasets generated in the laboratory, in order to allow other researchers to further investigate the properties of complex networks with higher-order interactions.
Keywords: Synchronization; Complex networks; Simplicial complexes; Electronic circuits (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077924004673
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:183:y:2024:i:c:s0960077924004673
DOI: 10.1016/j.chaos.2024.114915
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().