On the use of dynamical systems in cryptography
Samuel Everett
Chaos, Solitons & Fractals, 2024, vol. 183, issue C
Abstract:
Ever since the link between nonlinear science and cryptography became apparent, the problem of applying chaotic dynamics to the construction of cryptographic systems has gained a broad audience and has been the subject of thousands of papers. Yet, the field has not found its place in mainstream cryptography, largely due to persistent weaknesses in the presented systems. The goal of this paper is to help remedy this problem in two ways. The first is by providing a new algorithm that can be used to attack – and hence test the security of – stream ciphers based on the iteration of a chaotic map of the interval. The second is to cast discrete dynamical systems problems in a modern cryptographic and complexity theoretic language, so that researchers working in chaos-based cryptography can begin designing cryptographic protocols that have a better chance of meeting the extreme standards of modern cryptography.
Keywords: Chaotic dynamical system; Discrete dynamical systems; Cryptography; Encryption; Stream cipher; One-way functions (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077924005046
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:183:y:2024:i:c:s0960077924005046
DOI: 10.1016/j.chaos.2024.114952
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().