Revealing the dynamical properties of Jupiter-size exoplanets on elliptic orbits
Euaggelos E. Zotos,
Eman M. Moneer,
Fredy L. Dubeibe and
Tobias C. Hinse
Chaos, Solitons & Fractals, 2024, vol. 184, issue C
Abstract:
Our study delves into the orbital dynamics of an exoplanetary system, comprising a solar-mass host star, a transiting Jupiter-sized body, and an Earth-sized exoplanet. This exploration is grounded in the general three-body problem framework. We undertake a comprehensive and systematic numerical analysis of the available phase space, employing a rigorous orbit classification methodology to determine the final states and/or dynamical properties of the Earth-sized exoplanet. Our classification scheme adeptly distinguishes between three fundamental orbital outcomes: escape trajectories, collisional events, and bounded motion for the Earth-sized exoplanet. Furthermore, when the motion exhibits regularity in the Liouville sense, we categorize the initial conditions, contingent upon the characteristics of their respective trajectories. These regular orbits not only possess intriguing dynamical attributes but also provide valuable insights into phase space regions where the motion of the Earth-sized exoplanet may maintain long-term dynamical stability. Specifically, we highlight exotic high-eccentricity orbital architectures rendering a regular quasi-periodic time-evolution. Of particular significance is our discovery of special cases where the Earth-sized exoplanet follows trajectories that render it an exomoon in relation to the transiting Jupiter-sized exoplanet. This investigation extends our understanding of the complex dynamics within exoplanetary systems, shedding light on the dynamics, and the potential pathways for exomoon formation possibly via accretion on the host planet.
Keywords: Planets and satellites; General — planets and satellites; Dynamical evolution and stability — planet-star interactions — methods; Numerical (search for similar items in EconPapers)
Date: 2024
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077924005216
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:184:y:2024:i:c:s0960077924005216
DOI: 10.1016/j.chaos.2024.114969
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().