Generalized information entropy and generalized information dimension
Tianxiang Zhan,
Jiefeng Zhou,
Zhen Li and
Yong Deng
Chaos, Solitons & Fractals, 2024, vol. 184, issue C
Abstract:
The concept of entropy has played a significant role in thermodynamics and information theory, and is also a current research hotspot. Information entropy, as a measure of information, has many different forms, such as Shannon entropy and Deng entropy, but there is no unified interpretation of information from a measurement perspective. To address this issue, this article proposes Generalized Information Entropy (GIE) that unifies entropies based on mass function. Meanwhile, GIE establishes the relationship between entropy, fractal dimension, and number of events. Therefore, Generalized Information Dimension (GID) has been proposed, which extends the definition of information dimension from probability to mass fusion. GIE plays a role in approximation calculation and coding systems. In the application of coding, information from the perspective of GIE exhibits a certain degree of particle nature that the same event can have different representational states, similar to the number of microscopic states in Boltzmann entropy.
Keywords: Information entropy; Probability; Mass function; Approximate calculation; Coding theory (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077924005289
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:184:y:2024:i:c:s0960077924005289
DOI: 10.1016/j.chaos.2024.114976
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().