Complex order fractional differential equation in complex domain with mixed boundary condition
Ashish Yadav,
Trilok Mathur and
Shivi Agarwal
Chaos, Solitons & Fractals, 2024, vol. 185, issue C
Abstract:
Fractional calculus of complex orders in the complex domain is a rapidly growing field of interest among many mathematicians. While fractional differential equations in real variables have received much attention recently, attempts to solve such equations in complex variables have been rather scant. This research work deals with the complex order fractional differential equation with boundary conditions. The existence of solutions is established by using Dhage’s fixed point theorem with some conditions, whereas the application of the Banach contraction principle obtains the uniqueness of the solution. Moreover, Ulam–Hyers stability of the considered problem is also discussed in this work. Examples and application are presented to verify the obtained results.
Keywords: Fractional differential equation; Dhage’s fixed point theorem; Lebesgue dominated convergence theorem; Banach space; Banach contraction principle; Ulam–Hyers stability (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077924006428
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:185:y:2024:i:c:s0960077924006428
DOI: 10.1016/j.chaos.2024.115090
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().