Deep Learning models for the analysis of time series: A practical introduction for the statistical physics practitioner
Alfredo Crespo-Otero,
Pau Esteve and
Massimiliano Zanin
Chaos, Solitons & Fractals, 2024, vol. 187, issue C
Abstract:
Following other fields of science, Deep Learning models are gaining attention within the statistical physics community as a powerful and efficient way for analysing experimental and synthetic time series, and for quantifying properties thereof. Applying such models is nevertheless a path full of pitfalls, not only due to their inherent complexity, but also to a lack of understanding of some of their idiosyncrasies. We here discuss some of these pitfalls in the context of time series classification, covering from the selection of the best model hyperparameters, how the models have to be trained, to the way data have to be pre-processed. While not providing one-fits-all answers, the statistical physics practitioner will here find what questions ought to be posed, and a first guide about how to tackle them.
Keywords: Deep Learning; Chaos; Classification (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077924009111
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:187:y:2024:i:c:s0960077924009111
DOI: 10.1016/j.chaos.2024.115359
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().