Patterns of rogue waves in the sharp-line Maxwell–Bloch system
Zhengyan Duan,
Xiuyu Tao and
Bo Yang
Chaos, Solitons & Fractals, 2024, vol. 187, issue C
Abstract:
The Maxwell–Bloch system describes light-matter interactions in a semi-infinitely long one dimensional two-level optical medium. Rogue wave patterns in the Maxwell–Bloch system under sharp-line limit are analytically studied. It is shown that when single internal parameter in bilinear expressions of rogue waves gets large, these waves would exhibit clear geometric patterns, which comprise fundamental (Peregrine) rogue waves arranged in shapes such as triangle, pentagon, heptagon and nonagon structures, with a possible lower-order rogue wave at the center. These rogue wave patterns are analytically determined from the root structure of the Yablonskii–Vorob’ev polynomial hierarchy through dilation, rotation, stretch and shear. It is also shown that when multiple internal parameters in the rogue wave solutions get large, new rogue wave patterns would arise, including heart-shaped structures, fan-shaped structures, and many others. Analytically, these patterns are determined by the root structure of the Adler–Moser polynomials through a linear transformation. Comparison between analytical predictions of these rogue patterns and true solutions shows excellent agreement.
Keywords: Rogue waves; Pattern formation; Asymptotics; Maxwell–Bloch system (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077924009597
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:187:y:2024:i:c:s0960077924009597
DOI: 10.1016/j.chaos.2024.115407
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().