Probabilistic analysis of the steady state of weakly perturbed linear oscillators subject to a class of Gaussian inputs
J.-C. Cortés,
J.-V. Romero,
M.-D. Roselló and
J.F. Valencia Sullca
Chaos, Solitons & Fractals, 2024, vol. 187, issue C
Abstract:
This paper aims to probabilistically study a class of nonlinear oscillator subject to weak perturbations and driven by stationary zero-mean Gaussian stochastic processes. For the sake of generality in the analysis, we assume that the perturbed term is a polynomial of arbitrary degree in the spatial position, that contains, as a particular case, the important case of the Duffing equation. We then take advantage of the so-called stochastic equivalent linearization technique to construct an equivalent linear model so that its behavior consistently approximates, in the mean-square sense, that of the nonlinear oscillator. This approximation allows us to take extensive advantage of the probabilistic properties of the solution of the linear model and its first mean-square derivative to construct reliable approximations of the main statistical moments of the steady state. From this key information, we then apply the principle of maximum entropy to construct approximations of the probability density function of the steady state. We illustrate the superiority of the equivalent linearization technique over the perturbation method through some examples.
Keywords: Nonlinear oscillator; Principle of maximum entropy; Equivalent linearization; Perturbation technique (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077924010038
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:187:y:2024:i:c:s0960077924010038
DOI: 10.1016/j.chaos.2024.115451
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().