EconPapers    
Economics at your fingertips  
 

Convolutional neural network for high-performance reservoir computing using dynamic memristors

Yongjin Byun, Hyojin So and Sungjun Kim

Chaos, Solitons & Fractals, 2024, vol. 188, issue C

Abstract: In the rapidly advancing field of neuromorphic computing, W/ZnO/TiN resistive random-access memory (RRAM) devices have emerged as a next-generation computational building block. Our findings reveal the significant role played by the thickness of the ZnO layer in determining the electrical properties essential for data storage and neuromorphic applications. The short-term memory (STM) capabilities, which are critical for processing temporal information, are closely examined alongside their potential to simulate biological synaptic functions through multilevel conductance states and synaptic behaviors such as paired-pulse facilitation. Integrating these devices into reservoir computing systems enhances pattern recognition and accelerates learning, which demonstrates their utility in sequential data processing. In addition, conductance modulation via pulse width adjustment is a novel strategy to optimize memory device performance. By showcasing the effectiveness of W/ZnO/TiN devices in neuromorphic computing through high-accuracy image recognition tasks, our study highlights their foundational role in advancing neuromorphic computing technologies. The adaptability, learning capabilities, and efficiency of these devices underscore their potential for developing hardware-based neuromorphic systems that are capable of complex data processing.

Keywords: Convolutional neural network; Reservoir computing; Memristor; Neuromorphic system (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077924010889
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:188:y:2024:i:c:s0960077924010889

DOI: 10.1016/j.chaos.2024.115536

Access Statistics for this article

Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros

More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().

 
Page updated 2025-03-19
Handle: RePEc:eee:chsofr:v:188:y:2024:i:c:s0960077924010889