Maximal canards in a slow–fast Rosenzweig–MacArthur model with intraspecific competition among predators
Xingyi Xu,
Qianqian Zhao and
Cheng Wang
Chaos, Solitons & Fractals, 2024, vol. 188, issue C
Abstract:
Using geometric singular perturbation theory, this paper investigates the canard phenomenon of a slow–fast Rosenzweig–MacArthur model. The model incorporates intraspecific competition among predators, assuming predator reproduction occurs much slower than prey. We demonstrate the occurrence of maximal canards between attracting and repelling slow manifolds as a bifurcation parameter varies. Additionally, we derive an analytic expression to approximate the bifurcation parameter value at which a maximal canard occurs. The method employed for this analysis relies on the blowup method. This involves finding a quasihomogeneous blowup map to desingularize the nonnormally hyperbolic point. Subsequently, charts are utilized to express the blowup in local coordinates, calculate local data, investigate the dynamics of the blown-up vector fields, and establish connections across charts. Furthermore, we provide numerical simulations to illustrate the canard explosion phenomenon in the model. Through parameter variation, we observe that the model transitions from a small amplitude limit cycle to small amplitude canard cycles (canards without a head), then to large amplitude canard cycles (canards with a head), and finally to a large amplitude relaxation cycle.
Keywords: Predator–prey; Blowup method; Geometric singular perturbation; Maximal canard; Canard explosion (search for similar items in EconPapers)
Date: 2024
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077924011159
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:188:y:2024:i:c:s0960077924011159
DOI: 10.1016/j.chaos.2024.115563
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().