EconPapers    
Economics at your fingertips  
 

Multimodal vehicle trajectory prediction and integrated threat assessment algorithm based on adaptive driving intention

Xingrong Zhang, Jiaxuan Cai, Fuzhou Chen and Rongjun Cheng

Chaos, Solitons & Fractals, 2024, vol. 188, issue C

Abstract: As autonomous driving and connected communication technologies advance swiftly, vehicle trajectory prediction has become increasingly significant. The motion of a vehicle is contingent not only on its historical trajectory but is also subject to the influence of surrounding vehicles, thereby exhibiting intricate social and temporal interdependencies. Furthermore, the inherent randomness and uncertainty in driver behavior render vehicle trajectory prediction inherently multimodal, a factor that is frequently neglected in current research. Against this backdrop, a multimodal vehicle trajectory prediction (MTP) model based on an encoder-decoder architecture is proposed to hierarchically extract historical features of vehicles. The model consists of five key components: temporal feature encoder module, spatial interaction module, spatial-temporal dependence module, driving intention fusion module and multimodal trajectory output module. Experiments on the NGSIM dataset show that the predictive performance of the model has been improved to varying degrees, especially at 3–5 s, where the improvement is more significant. Compared with state-of-the-art models, the Root Mean Square Error (RMSE) error at 5 s time horizon is 3.38 m on NGSIM dataset, which represents a 25 % improvement. To measure the safety of predicted trajectories, we propose a comprehensive threat assessment model that combines collision time (TTC), headway (TH) and time to lateral collision (TLC) metrics based on safe distance theory. This model not only evaluates the longitudinal collision threat in the following state, but also evaluates the lateral collision threat during driving maneuvers in multi lane scenarios, thereby comprehensively improving the safety of vehicle driving. This research also offers new perspectives and insights for the development of autonomous driving.

Keywords: Multimodal vehicle trajectory prediction; Time to lateral collision; Dilated convolutional attention; Adaptive driving intention (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077924011561
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:188:y:2024:i:c:s0960077924011561

DOI: 10.1016/j.chaos.2024.115604

Access Statistics for this article

Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros

More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().

 
Page updated 2025-03-19
Handle: RePEc:eee:chsofr:v:188:y:2024:i:c:s0960077924011561